Multiple Choice Questions

- 1. A mixed cost
 - a) is fixed over a wider range of activity than a variable cost.
 - b) is a fixed cost over the relevant range and a variable cost everywhere else.
 - c) contains both fixed and variable components.
 - d) always increases on a per unit basis.
- 2. The per-unit amount of three different production costs for Jones, Inc., are as follows:

Production	<u>Cost A</u>	<u>Cost B</u>	<u>Cost C</u>
20,000	\$12.00	\$15.00	\$20.00
80,000	\$12.00	\$11.25	\$5.00

What type of cost is each of these three costs?

- a) Cost A is mixed, Cost B is variable, Cost C is mixed
- b) Cost A is fixed, Cost B is mixed, Cost C is variable.
- c) Cost A is fixed, Cost B is variable, Cost C is mixed.
- d) Cost A is variable, Cost B is mixed, Cost C is fixed.
- 3. An activity level the company expects to operate at is called a
 - a) Margin of Safety
 - b) Relevant range
 - c) Contribution margin
 - d) Target net income
- 4. Buddy uses the high-low method of estimating costs. Bud had total costs of \$50,000 at its lowest level of activity, when 5,000 units were sold. When, at its highest level of activity, sales equaled 12,000 units, total costs were \$78,000. Bud would estimate variable cost per unit as
 - a) \$10.00
 - b) \$6.50
 - c) \$4.00
 - d) \$7.53

- 5. Buddy uses the high-low method of estimating costs. Bud had total costs of \$50,000 at its lowest level of activity, when 5,000 units were sold. When, at its highest level of activity, sales equaled 12,000 units, total costs were \$78,000. Bud would estimate the fixed cost to be
 - a) \$20,000
 - b) \$30,000
 - c) \$40,000
 - d) \$50,000
- 6. ABC company sells shoes for \$450. The variable cost is \$200 per unit. The fixed costs are \$750,000. What is the breakeven in sales dollars?
 - a) \$750,000
 - b) \$937,500
 - c) \$1,350,000
 - d) \$1,687,500
- 7. ABC company sells shoes for \$450. The variable cost is \$200 per unit. The fixed costs are \$750,000. The company wants to have a profit of \$250,000. How many units do they have to sell to achieve this goal?
- a) 3,000
- b) 4,000
- c) 5,000
- e) 6,000
- 8. According to the graph below, what is the break-even point in units?

- a) 400
- b) 600
- c) 200
- d) 700

9. Determine the margin of safety ratio from the following data:

Sales	\$30 per unit
Variable Cost	\$10 per unit
Units Sold	750 units
Fixed Costs	\$10,000

- a) 20%
- b) 33%
- c) 45%
- d) 75%
- 10. Determine fixed costs using the high-low method from the following data:

Total Costs	Level of Activity	
\$65,000	11,250	
\$52,000	8,000	
\$86,000	16,500	

- a) 45,000
- b) 20,000
- c) 16,500
- d) 9,500

Practice Problems

Practice Problem #1

A Company accumulated the following data for a delivery truck.

	Miles Driven	<u>Total Cost</u>		<u>Miles</u> Driven	<u>Total Cost</u>
January	10,000	\$15,000	March	9,000	\$12,500
February	8,000	\$14,500	April	7,500	\$13,000

Required: a) Determine the equation to predict total costs for the delivery truck.b) Calculate the total costs be if 12,187 miles were driven.

Practice Problem #2

Data concerning N Company's activity for the first six months of the year appear below:

	Machine Hours	Electrical Cost
January	4,000	\$3,120
February	6,000	4,460
March	4,800	3,500
April	5,800	5,040
Мау	3,600	2,900
June	4,200	3,200

Required: Using the high-low method of analysis, estimate the variable electrical cost per machine hour.

Practice Problem #3

P Company has provided the following data:

Sales Price per unit: \$50 Variable Cost per unit: \$30 Fixed Cost: \$135,000 Expected Sales: 20,000 units

- a) What is the breakeven point in sales dollars?
- b) What is the current margin of safety?
- c) If the company wants to have net income of \$70,000, how many units must they sell?

900 / 901 / 901 / 900 / 901 / 901 / 901 / 901 / 901 / 901 / 901 / 901 / 901 / 901 / 901 / 901 / 901 / 901 / 901

Solutions

1.	С
2.	D
3.	В
4.	С
5.	В
6.	С
7.	В
8.	А
9.	В
10.	В

Practice Problem #1

a)

/					.			
_	Cost \$	High I \$15,0	<u>20int</u> 000	- <u>Low</u> \$13	<u>Point</u> 3,000	=	<u>Change</u> \$2,000	
	Activity	10,0	00	- 7,	500		2,500	
-	Change in Cos Change in Act	<u>st \$</u> vity	= <u>\$2</u> 2,	2 <u>,000</u> ,500	= \$(0.80 va	ariable cost/unit	
	Using either th	e hiah	point or	low poir	nt. tota	al fixed	l cost is calculate	ed next:
	Fixed	l Cost	=	Total Co	nst	-	Variable Co	st
		000				4		
	\$/,	000	=	\$15,00	U	- 4	8,000 = \$0.80 (10,000)
	C	R						
	\$7,	000	=	\$13,00	0	- :	\$6,000 = \$0.80	(7,500)
							., .	.,,,
b)	The equation	is: \	r = \$7,0)00 + \$(0.80(X	()		
~/	Total Cost	=	Fixed	l Cost	+		Variable Cost	
	V	_		 ว	上		h(Y)	
		-	+ 7	a 000	T	+0 75		07)
	\$16,/50	=	\$/,	000	+	\$9,75	v = \$0.80 (12,13)	37)

Practice Problem #2:

<u>High Point</u> - <u>Low Point</u> = <u>Change</u>

Page 5 of 6

Cost \$	\$4,460	\$2,900	\$1,560
Activity	6,000	3,600	2,400

 $\frac{\text{Change in Cost \$}}{\text{Change in Activity}} = \frac{\$1,560}{2,400} = \$0.65 \text{ variable cost/unit}$

Practice Problem #3:

a)

		unit	ratio
	sales	50	100%
١	Variable cost	30	60%
	Contribution margin	20	40%

Fixed cost/contribution margin ratio= breakeven in sales dollars 135,000/ 40%= \$337,500

b)Find current margin of safety

Current Income:	
Sales (20,000*\$50)	\$1,000,000
Variable Cost (20,000* 30)	600,000
Contribution Margin	400,000
Fixed Expenses	<u>135,000</u>
Net Income	265,000

Sales- Breakeven Sales= Margin of Safety 1,000,000- 337,500= \$662,500

c) (Fixed Costs + Target Profit)/ contribution margin per unit (135,000+500,000)/ 20= 31,750